

Converter Integration of High-Voltage High-Frequency SiC Power Devices

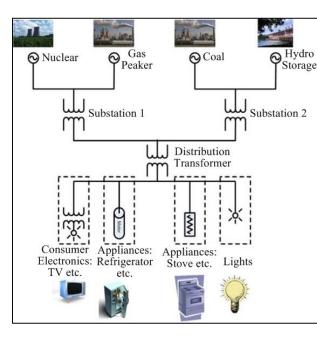
Session:

Medium-Voltage WBG Devices and Converters Development for Advanced Distribution Grids

Subhashish Bhattacharya Dept. of ECE FREEDM Systems Center North Carolina State University

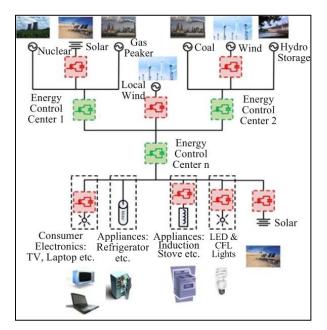
Outline of presentation

- HV SiC devices 10kV MOSFET, 15kV MOSFET, 15kV IGBT, 6.5kV JFET, 3.3kV - 5kV MOSFET
- What MV Power Conversion applications are enabled
- Grid integration of renewables
- High MW and MV Motor Drives
- FACTS and D-STATCOM applications
- Are these HV SiC devices easy to use like 1.2kV/1.7kV SiC MOSFET devices ?



Introduction

Modern Power System



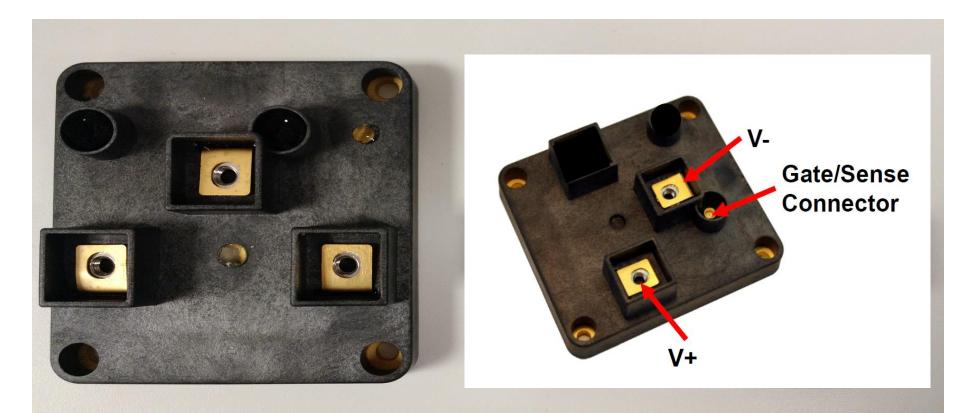
Traditional Power System

♥Nuclear Solar ♥ Gas Peaker Q Coal QWind QHydro Storage Local Wind 9 Substation 2 Substation 1 Distribution Transformer **≟** Solar Appliances: Appliances: LED & Refrigerator Induction CFL Stove etc. Lights Consumer Electronics: TV, Laptop etc. etc.

Replacing 60 Hz Transformer

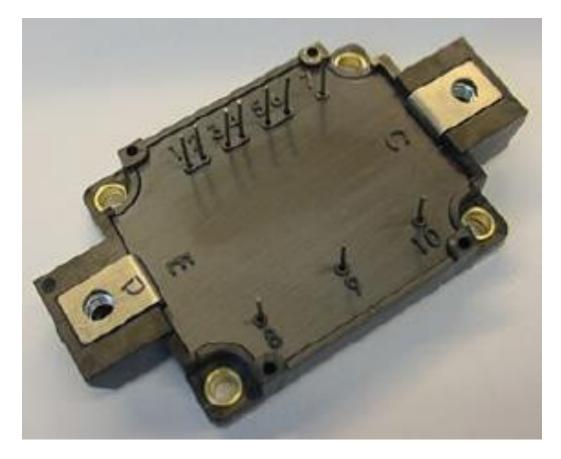
- Complex large no. of variables
- Limited scope for control
- Non-linear loads
 - Harmonics
 - Lagging reactive power

- Penetration of renewables
- Power electronic converters
 - dc-ac
 - ac-ac

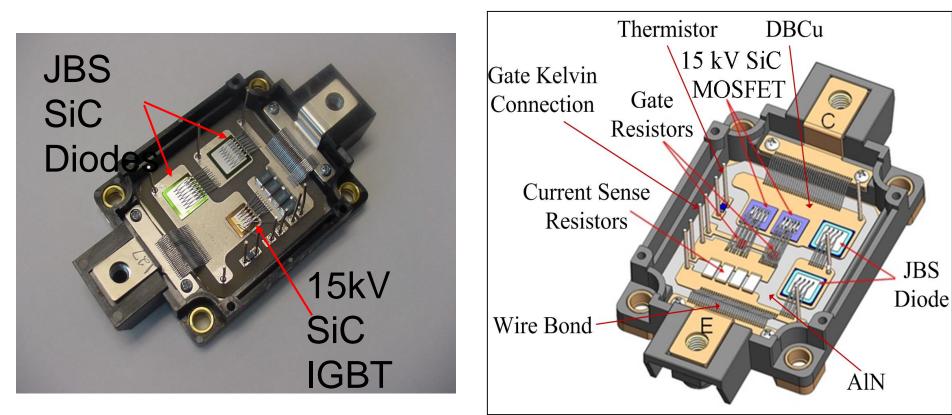

- Increased controllability
 - Energy Control Center
 - Solid State Transformer
 - Power Electronic Transformer
 - Intelligent Transformer

APEI SiC Modules

APEI Power Module - 10kV, 10A SiC MOSFET

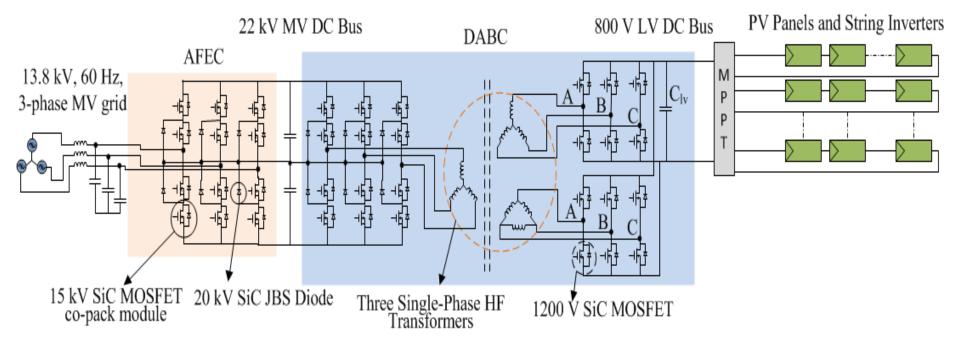

APEI Half-bridge Module

APEI Co-pack Module

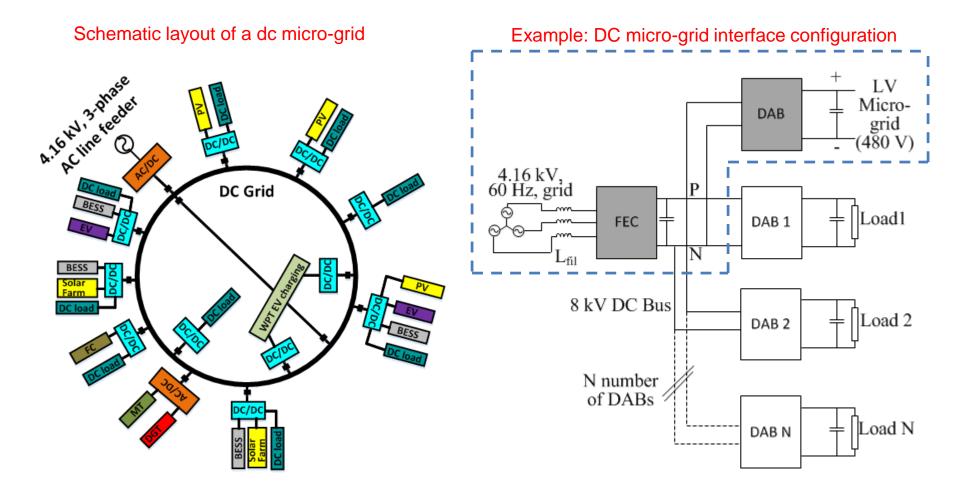

10kV SiC MOSFET Co-pack Modules

IC STATE UNI

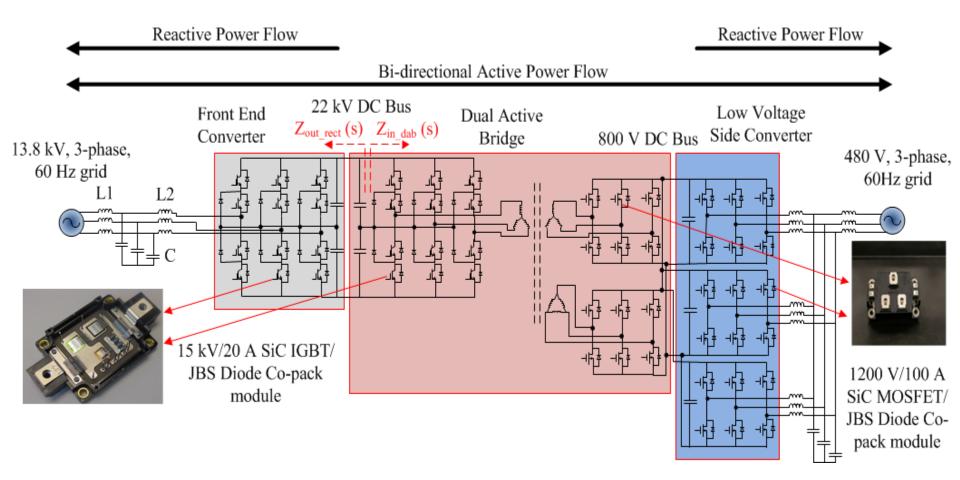
Single 10kV SiC MOSFET Module


15 kV SiC IGBT & 15 kV SiC MOSFET Modules

15 kV SiC IGBT (single chip) co-pack module


15 kV SiC MOSFET(Two chip) co-pack module

PV Integration with 13.8 kV Grid using SiC Devices – Enabler for Renewables on the Grid

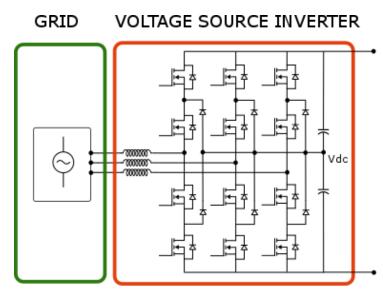


 Provide power and voltage support functions in sub-cycle time scales to keep the grid and embedded Microgrids stable

Enabling DC Micro-grid

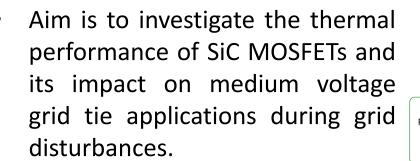
Transformerless Intelligent Power Substation (TIPS)

- Three-Phase SiC Devices based Solid State alternative to conventional line frequency transformer for interconnecting 13.8 kV distribution grid with 480 V utility grid.
- Smaller and Light Weight High Frequency Transformer operating at 10 kHz used for Isolation.
- Advantages Better Power Quality, Controllability, VAR Compensation, Small Size/Lightg Weight, lower Cooling Requirement, Integration of Renewable Energy Sources/Storage System

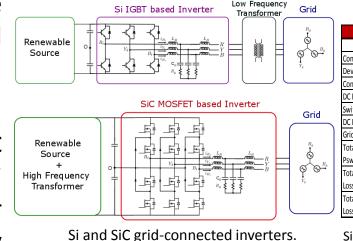


POWER ELECTRONIC CONVERTERS FOR MEDIUM VOLTAGE APPLICATIONS

- High voltage SiC devices will enable transformerless MV converters.
- This simple single stage topology can eliminate the need for modular multilevel approach being used currently.
- Higher thermal ratings of SiC can help improve overload capability and power density.
- SiC converters are superior to Si based converters as they can offer improved grid support features such as frequency and VAR support for microgrid applications.

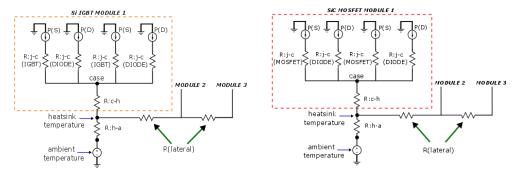


SiC enabled 3 level NPC inverter



POWERAMERICA Smart SiC Converters for Grid Support

Case Study



- A simple 3-leg inverter with SiC MOSFET is compared with a Si IGBT based converter for renewable integration to MV grid.
- For this analysis, three modules (each module comprising of two switches with body diodes) were mounted on a single heat-sink.
- The heat-sinks were chosen so as similar cooling to have performance.

	Si based Converter	SiC based Converter		
Converter kVA	100 kVA	100 kVA		
Device Chosen	1200V, 300A Si IGBT	10kV, 10A SiC MOSFET		
Converter Topology	2 level 3 ph converter	3 level NPC converter		
DC Bus Voltage	800 V	22 kV		
Switching Frequency	7 kHz	10 kHz		
DC Bus Capacitor	33 mF	45 μF		
Grid Side Reactance	0.2305 Ω (10%)	94.24 Ω (5%)		
Total Switching Loss,	007.64	216 72		
Psw (Watts)	907.64	216.72		
Total Conduction	4070 7	240.4		
Loss, Pc (Watts)	1270.7	248.1		
Total Converter	2470.24	464.82		
Loss, PL (Watts)	2178.34			

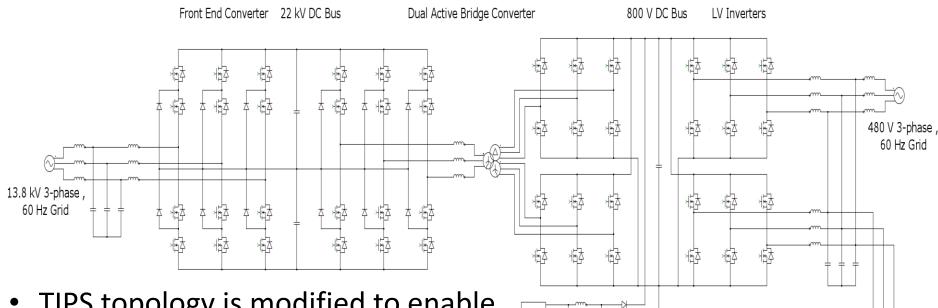
Si vs SiC for MV grid tie application.

Thermal equivalent models for Si IGBT and SiC MOSFET.

Smart SiC Converters for Grid Support

Case Study

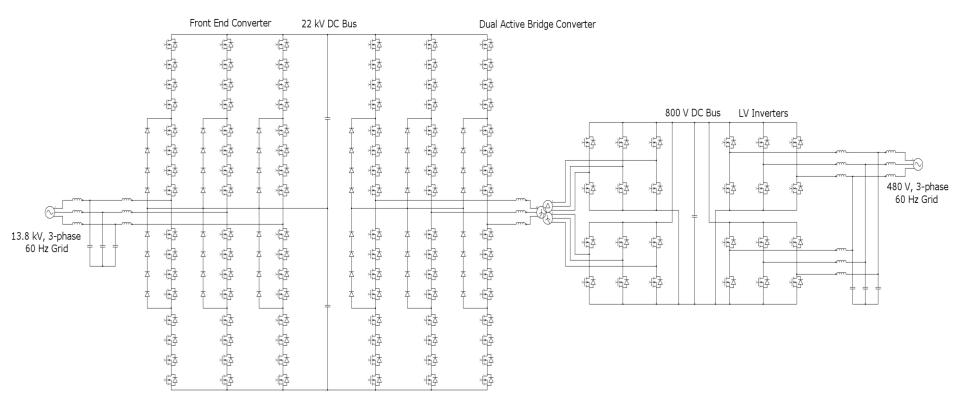
- During a sudden load demand, the SMART inverter will instantaneously increase its power output to stabilize the microgrid frequency.
- It was seen that the temperature estimate of the Si based converter switch reached its allowable junction temperature limit. Hence the converter had to be operated in a current limit mode.
- For the SiC MOSFET based converter the estimated junction temperature always remained within safe limits and hence it could offer better grid support.
- cy (Hz) Si Converter SiC Converter Grid Si Converter SiC Converter 42 time (s) Load Demand Scenario Si Converte SiC Converter Si Converte SiC Converte


Load Shedding Scenario

- During a load shedding, even though there is no junction temperature constraint in this case, the thermal cycling effect is more pronounced for Si system than the SiC system.
- This same concept can be extended to reactive power compensation by STATCOMs where a voltage sag/swell occurs.

Renewable Energy + Battery Energy Storage System Integration

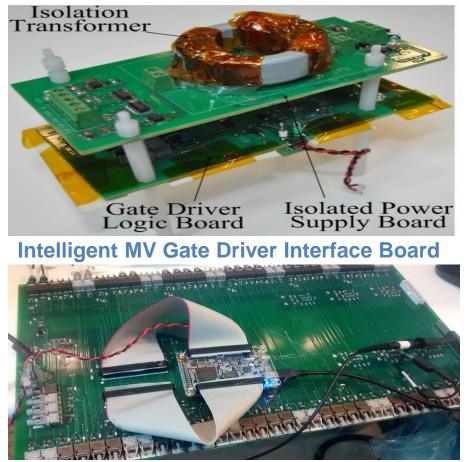
DESD


DESD

- TIPS topology is modified to enable renewable integration/distributed energy storage device (DESD).
- Renewable/DESD integration possible at low voltage DC/AC side.

Interconnection of AC,DC and AC-DC Micro-Grids, VAR Compensation

- TIPS variant using series connected 3.3 kV SiC devices.
- Potential topology for interconnection of AC/DC/Hybrid asynchronous microgrids.
- VAR compensation possible by both HV and LV converters.



Intelligent MV (15kV) Isolated Gate Driver

One Gate Driver Photo – Six Used for 3-Phase Converter

- Reduction of coupling capacitance needed for high dv/dt motor drive applications*
- High voltage insulation requirement for high side device operation – Kapton Tape used
- Active gate drive can reduce dv/dt**

Specification	Value
Turn-on Voltage	20V
Turn-off Voltage	-5 V
Supply Input Voltage	9 V
Switching Frequency	Up to 20 kHz
Turn-on Gate Resistance	14.7 Ω
Turn-off Gate Resistance	14.7 Ω
Isolation Voltage	Up to 15 kV 16
dv/dt capability	> 50 kV/µs

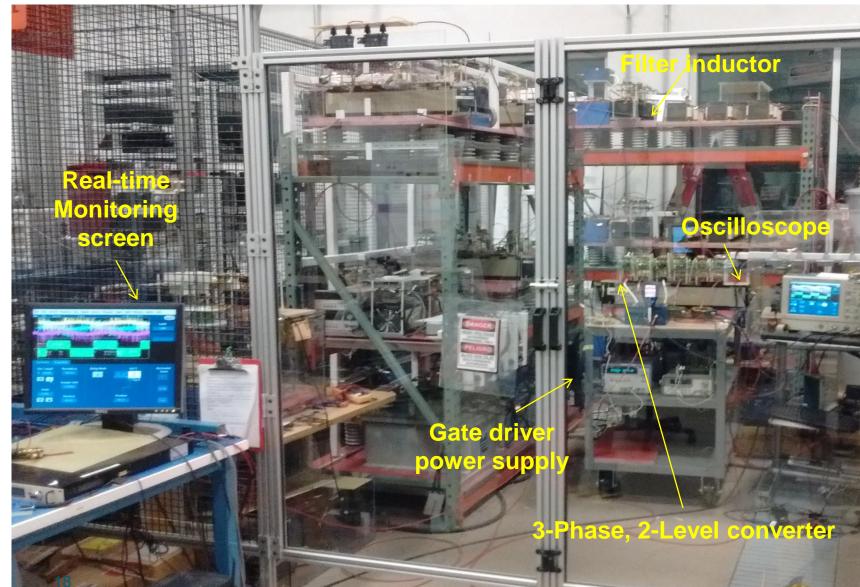
Monitoring test with IMGD Boost-buck

- Boost-buck at 3.75 kW for 30 min Switching test of 10 kV SiC MOSFET at 5 kV
- Boost input is $1.25\,kV$ and output is $5\,kV$. The boost duty is 25%

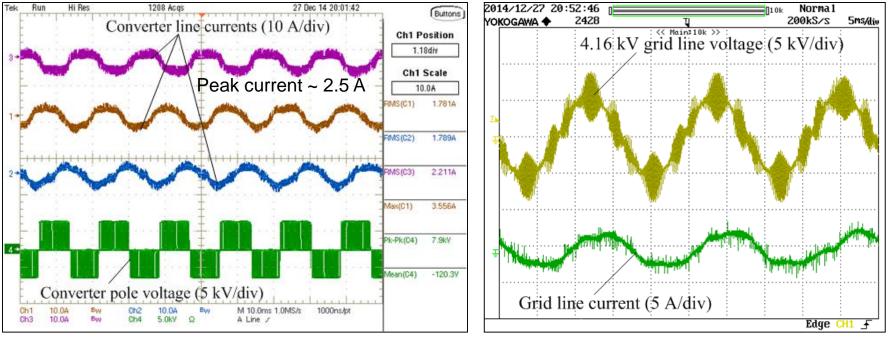
Figure: 5 kV boost-buck GD qualification results

Figure: 5 kV boost-buck GD qualification interface side results

NC STATE UN

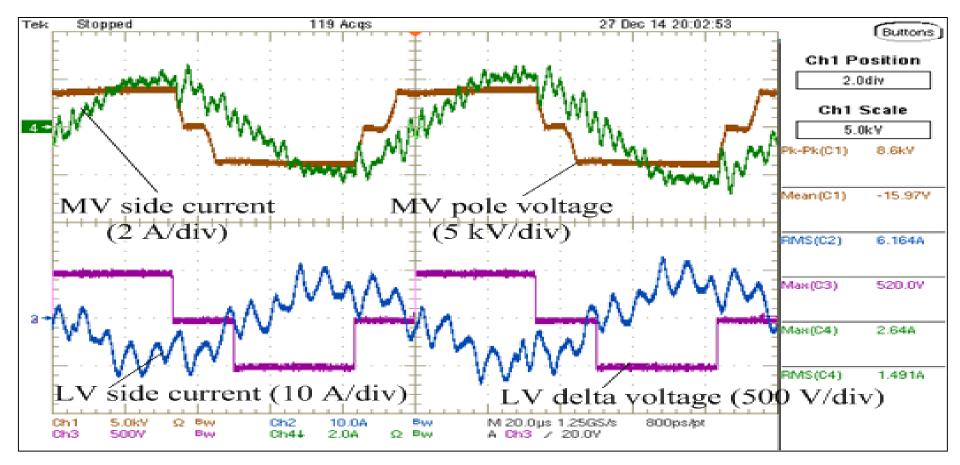

ENERGY

- 30 min thermal run at 5 kV and 3.75 kW power
- sp1 pointer near high side IGBT
- Desat-sensing, $V_{ds}(on)$, T_{mod} and I_d are verified


MV Converter "SAFE" Operation

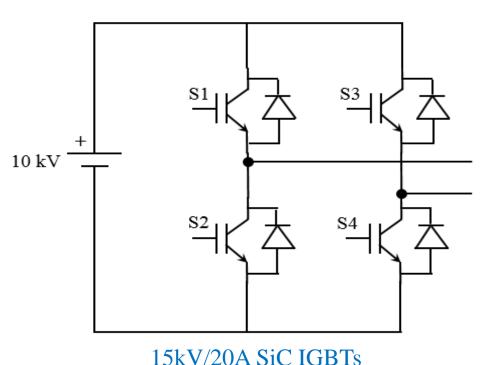
TIPS Grid Connected Converter Experimental Demonstration

FEC side waveforms for 4.16 kV MV ac grid tie operation with 8 kV MV dc bus and 9.6 kW load


FEC grid currents and R-phase pole-voltage

RY-grid voltage and R-phase grid current

- Ripple in the MV grid voltage is due to converter PWM voltage across the 60 Hz transformer leakage inductance (30 mH)
- Peak current shown is including the switching ripple


TIPS Grid Connected Converter Experimental Demonstration

DAB side waveforms at 8 kV MV dc bus voltage, 480 V LV dc bus voltage and 9.6 kW

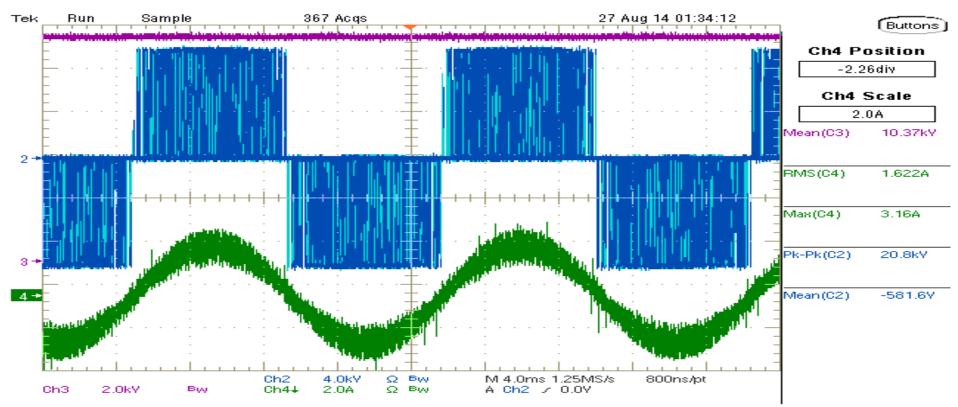
- All waveforms captured at the HF transformer terminals
- Ripple in the DAB currents is due to the HF transformer parasitics

No need for complex multilevel converter topologies

Simple 2-level VSC control

Robust 2-level VSC converter

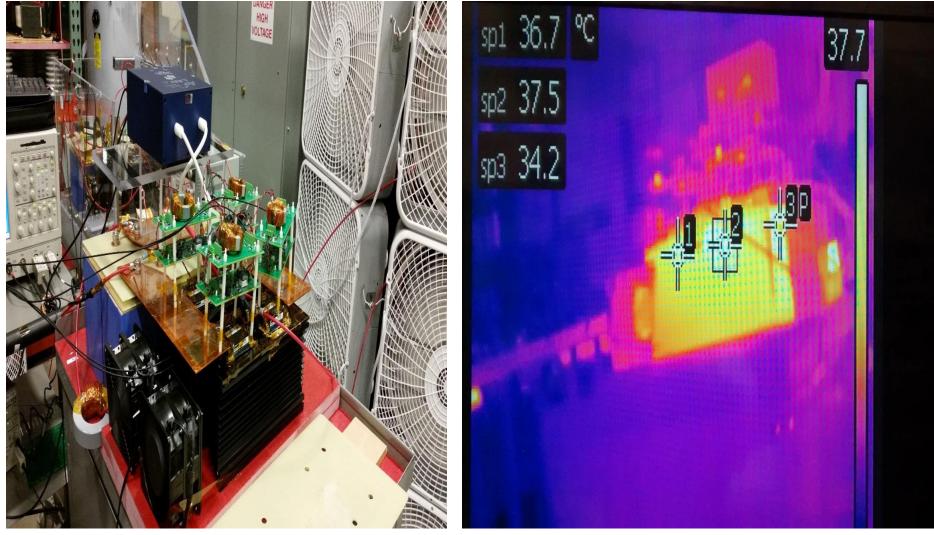
Compact – size, weight, volume


Efficient MV power conversion

• Only <u>four</u> 15 kV SiC IGBTs are sufficient for 7.2kV AC single-phase (7.2kV is single-phase of 3-phase 12.47kV) grid integration, whereas, at least <u>twelve</u> 6.5 kV Si IGBTs are needed for the same voltage.

• This H-Bridge test showcases the MV power conversion possibilities of the Cree developed 15kV SiC IGBT device [funded byARPA-E/DOE]

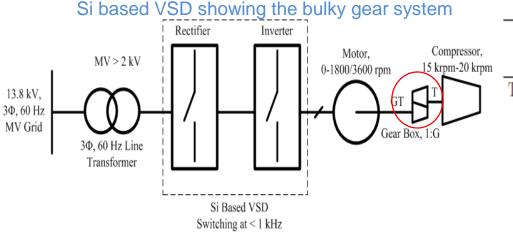
10 kV DC bus Voltage Demonstration

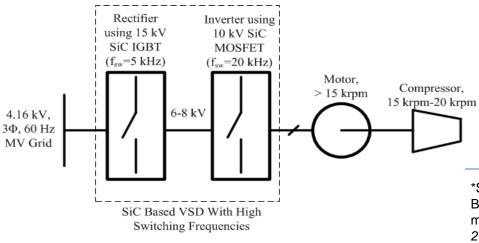


Ch2: AC voltage output (4 kV/div); Ch3: DC Voltage (2 kV/div); Ch4: AC current in R-L load (2 A/div)

- The 10kV H-Bridge operated at 10 kV, 5 kHz, 6 kW for 15 mins.
- Peak to Peak output ac voltage of 20 kV at 5 kHz PWM switching

10 kV DC bus Voltage Demonstration - Experimental setup


The 10 kV dc input is provided by 1:4 Boost Converter with the same 15kV / 20A SiC IGBT



High Speed Motor Drives Application

Density, Footprint and Efficiency of Si Based High Speed Motor Drive

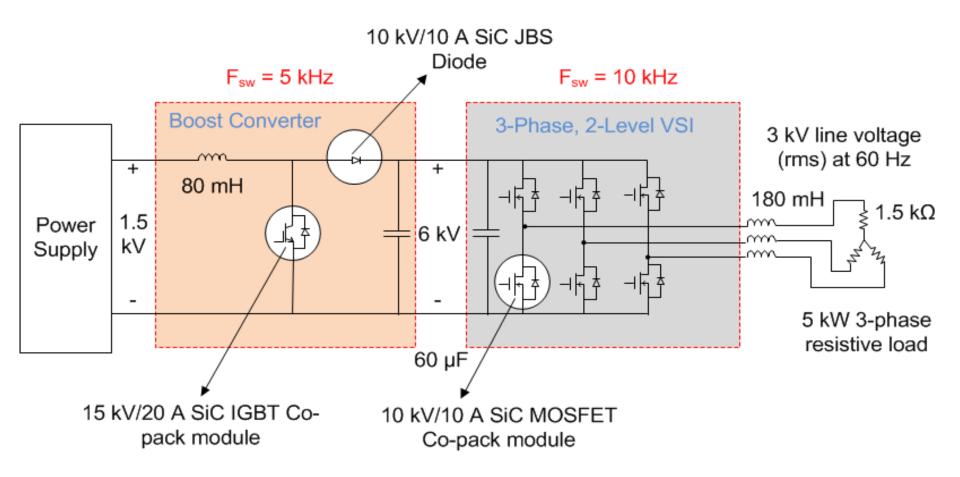
Proposed SiC based Back-Back MV VSD

Components	Inverse Volumetric Density	Footprint	Layer
	m^3/MW	m^2/MW	%
Transformer integrated VSD	9.091	3.29	96
Transformer section	4.545	1.645	98
VSD section	4.545	1.645	98
Motor	2	2.5	96
Gearbox	2.631	1.65	98
Total system	13.721	7.44	90

- 15 kV SiC IGBT used for AFEC* and TIPS
- 10 kV SiC MOSFET used for HF Inverter
- Remove the bulky and inefficient gear system
- Direct drive at medium voltage and high frequency

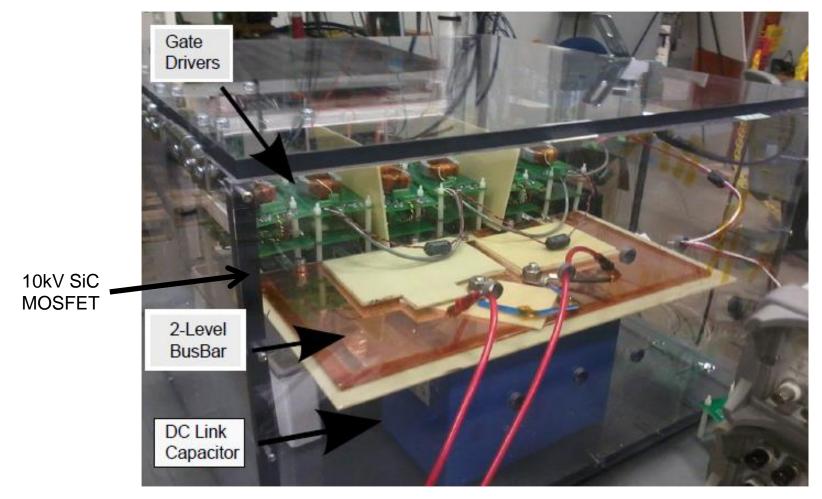
Achieved - 4 m³/MW

*S. Madhusoodhanan, K. Mainali, A. Tripathi, D. Patel, A. Kadavelugu, S. Bhattacharya, and K. Hatua, "Performance evaluation of 15 kV SiC IGBT based medium voltage grid connected three-phase three-level NPC converter," in *proc.* 2015 IEEE Energy Conversion Congress and Exposition, Montreal, Canada, pp. 3710-3717, Sept. 2015.

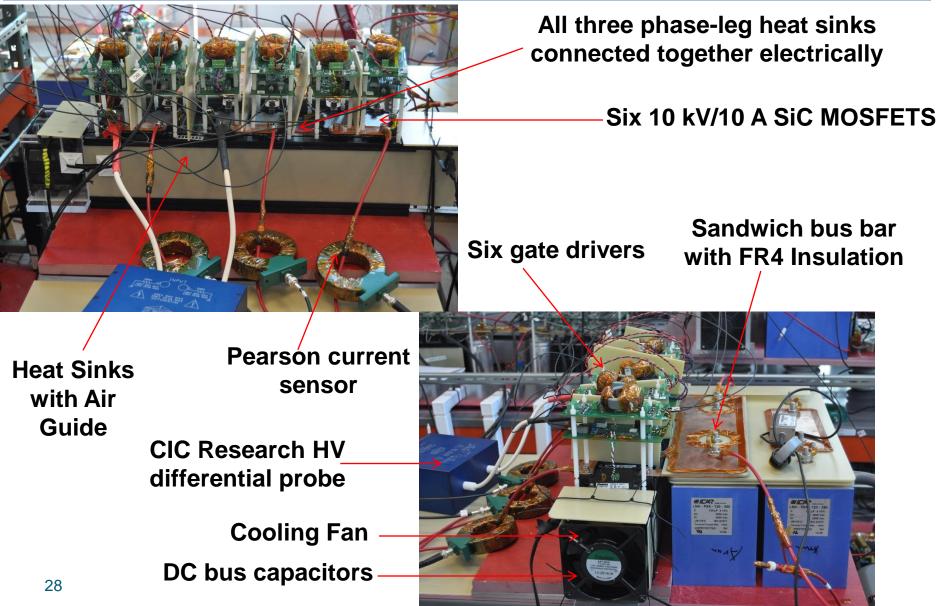


3-Phase, 2-Level Converter Development and Testing using 10 kV/10 A SiC MOSFETs

High Fundamental Frequency Three-Phase Converter Test Setup and Results

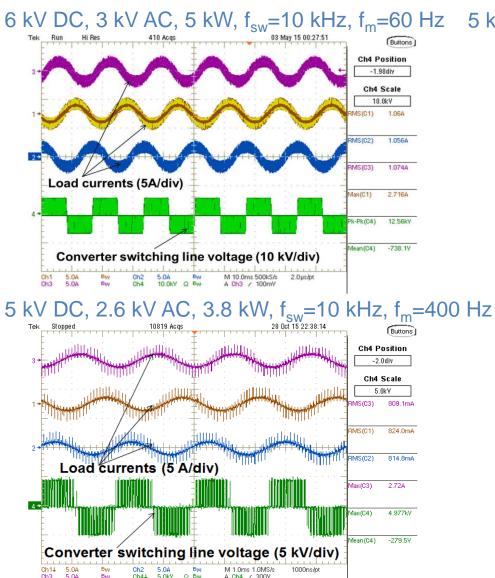


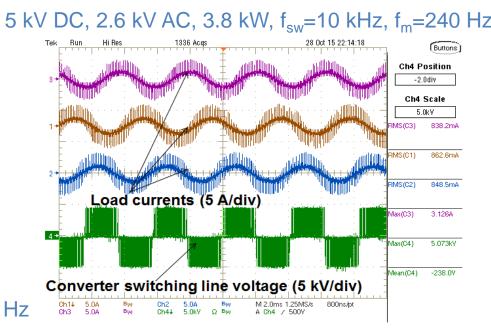
10kV SiC MOSFET 3-phase 2-level MV Inverter



2-level 3-phase Inverter built using 10kV SiC MOSFET

MV Converter Test Setup





Three-Phase Converter Hardware Development and Demonstration

Three-Phase Converter Experimental Waveforms

- Up to 400 Hz Fundamental Frequency with 10 kHz Switching Frequency
- For Fundamental Frequency Higher than 400 Hz, Switching Frequency increased to 20 kHz

Three-Phase Converter Hardware **Development and Demonstration**

Buttons

557.8m4

561.0m4

565.9m/

1.365A

3.21kV

-12 24

Ch4 Position

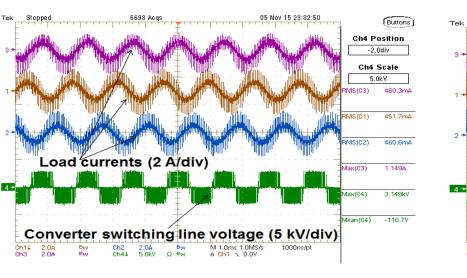
-2.0div

Ch4 Scale

5.0kV

MS(C3)

RMS(C2)


Max(C3)

Лаж(С4)

Aean(C4)

3 kV DC, 900 V AC, 1.45 kW, f_{sw}=20 kHz, f_m=720 Hz 3 kV DC, 900 V AC, 1.45 kW, f_{sw}=20 kHz, f_m=1 kHz

Stopped

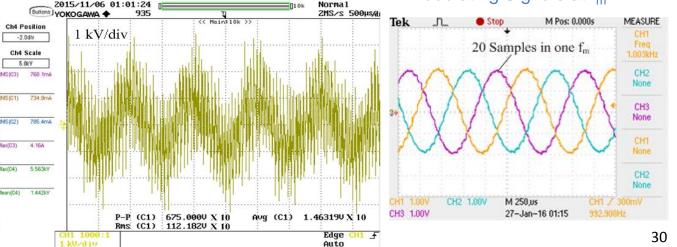
ax(C3)

lax(C4)

C50 Full

3 kV DC, $f_{sw}=20 \text{ kHz}$, $f_m=1 \text{ kHz}$ (Zoomed)

M 40.0us 25.0MS/s 40.0ns/bt


50 µs

Filter Voltage at f_m=1 kHz

Modulating Signals at f_m=1 kHz

1000ps/bt

06 Nov 15 00:30:28

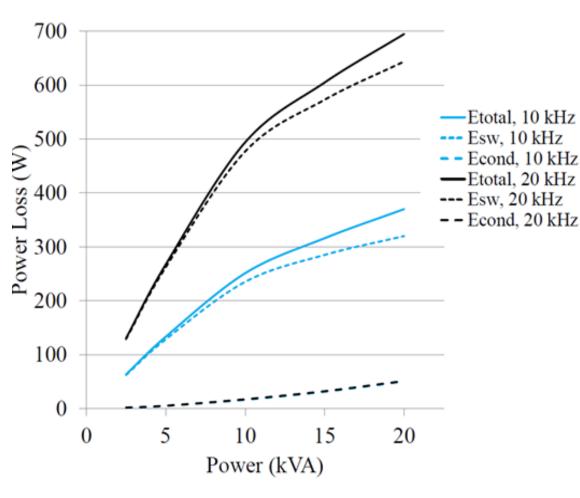
0.000kU

Load currents (2 A/div

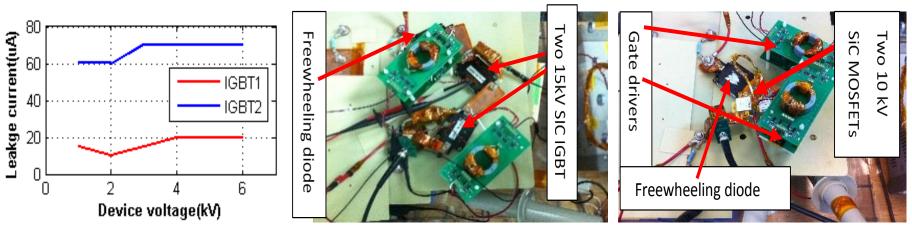
Ch2 Ch4∔

Converter switching line voltage (5 kV/div)

M 1.0ms 1.0MS/s

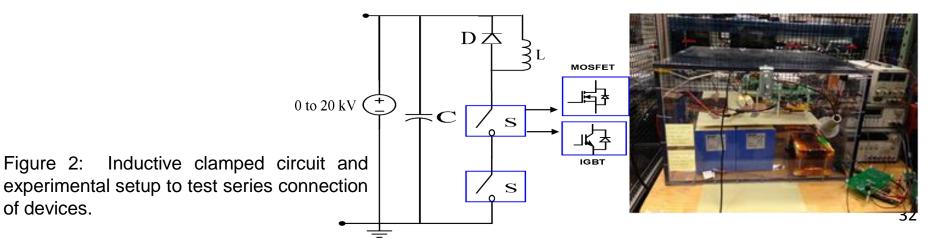

4 Ch1 5 0.0V

PLECS simulation based on real experimental data


Loss Variation with Load at $f_m = 1 \text{ kHz}$, 6 kV DC, 3 kV AC

- Semiconductor loss does not vary much with fundamental frequency – only 1 kHz considered
- At f_{sw} = 20 kHz and 20 kVA load, total loss - 695 W
- Efficiency 96.64% at a power density of 4.11 W/inch³ ³¹

Experimental setup of series connection HV SiC devices


(a)

(b)

(c)

NC STATE UNIVERS

Figure1 : (a): Leakage current with blocking voltage; (b): Experimental setup of two series connected 15kV SiC IGBT devices; (c) Experimental setup of two series connected 10kV SiC MOSFET devices;

Experimental results series connection of two 15kV SiC IGBT devices with RC snubber

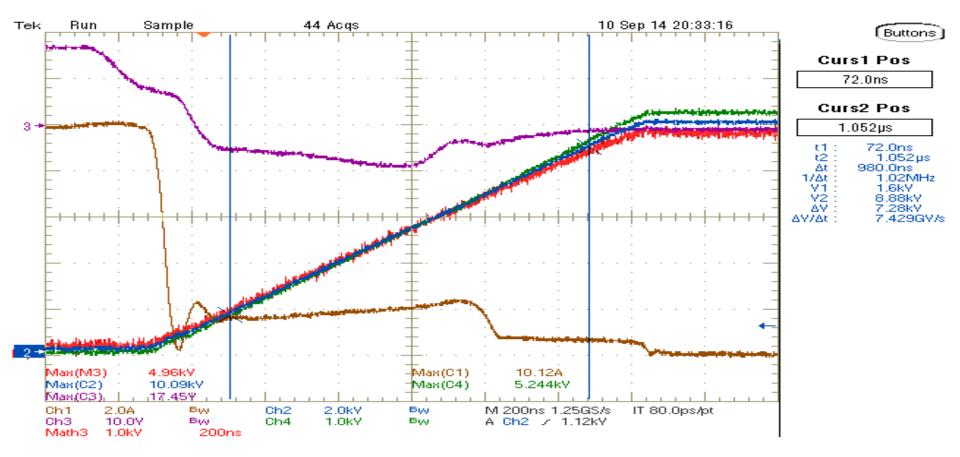


Figure: Balanced Turn-off characteristics At 10kV DC bus voltage with RC snubber.

[Ch3: Top device V_{GE} (20 V/div); Ch2: Total voltage (1 kV/div); Ch4: Bottom device V_{CE} (1 kV/div); Math1: Ch2-Ch4: Top device V_{CE} (1 kV/div) Ch1: Bottom device current: $I_C(5 \text{ A/div})$;]

Experimental results series connection of two 10kV SiC MOSFET devices with RC snubber

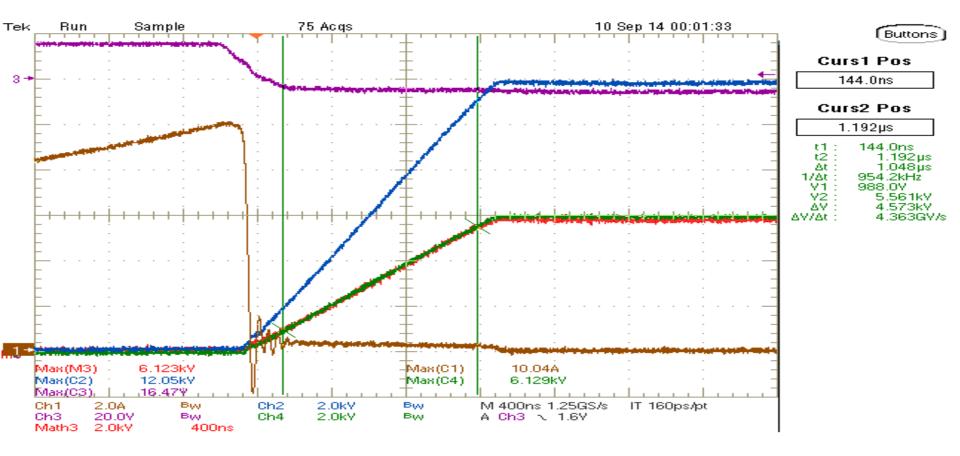
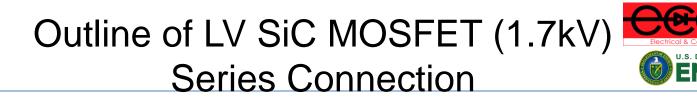
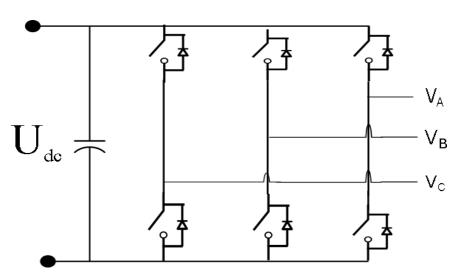


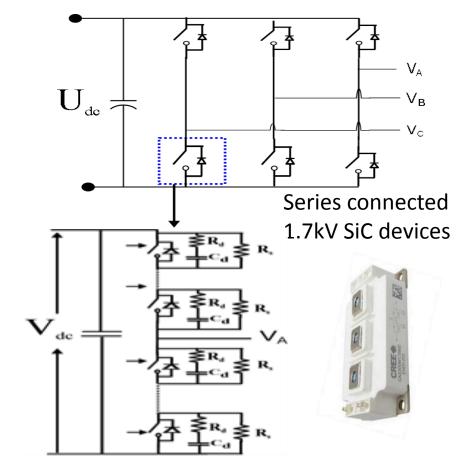
Figure: Balanced static & dynamic voltage sharing between two 10kV SiC MOSFETs 12kV DC bus voltage with RC snubber.


[Ch3: Top device V_{GS} (20 V/div); Ch2: Total voltage (1 kV/div); Ch4: Bottom device V_{DS} (1 kV/div); Math1: Ch2-Ch4: Top device V_{DS} (1 kV/div) Ch1: Bottom device current: $I_D(5 \text{ A/div})$;]

Comparison of HV switch with series connected 1.7kV SiC MOSFETs at 100A and 10kV-15kV SiC MOSFET modules (10 parallel connected 10A modules for 100A)



- Switching loss comparison of 10kV/100A module (10 parallel connected 10A modules) with series connected LV MOSFET (1.7kV/225A modules) at nearly 5kV/100A switching.
- Switching loss comparison of 15kV/100A module (10 parallel connected 10A modules) with series connected LV MOSFET (1.7kV/225A modules) at nearly 10 kV/100A switching.

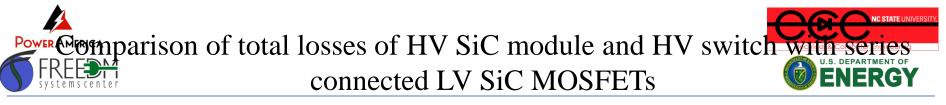


- Impact of series connected low voltage SiC devices vs single HV SiC device in **non- isolated** medium voltage converters.
- DEVICES FOR THE STUDY: 1.7kV SiC MOSFET 10kV SiC MOSFET, 15kV SiC MOSFET
 MOSFET

Single High voltage SiC device (>10kV)

1.7kV/300A Half bridge module 2 (CAS300M17BM)³⁷

and HV switch (10kV-15 kV) made using


series connection of 1.7kV SIC MOSFET at 100A

- The on-state resistance of 1.7kV SiC MOSFET per device in a half bridge module is 0.015 Ω at 100A, T_j=150°C as mentioned in the datasheet.
- Table : Conduction loss of high voltage switch using series connected 1.7 kV SiC MOSFET at $T_i=150$ °C

	No of 1.7 kV SiC	R _{dson} per	Total	Conduction
	MOSFETs for series	device	R _{dson}	loss
10kVswitch with 5		0.015Ω at	0.75	750W at
series connected	5	100A		100A
1.7kV SiC MOSFET				
15kVswitch with 10	10	0.015Ω at	1.5	1500 W at
series connected		100A		100A
1.7kV SiC MOSFET				

Comparison of Switching loss and conduction FREE Losses and dv/dt per HV module

Table: Comparison of Switching loss and dv/dt per HV module										
Module type,	Switching	Turn-off	Turn-on	Eoff per	Eon per	E _T = (En+Eoff)	R _{dson} at	Conducti		
maximum rating	voltage,	dv/dt	dv/dt	module	module	per module	Tj=150	on loss		
	current	(kV/µs)	(kV/µs)	(mJ)	(mJ)	(mJ)	٥C			
10kV/10A SiC						14.06	0.8Ω at	80 W at		
MOSFET	4.7 kV, 10A	42	20	2.24	11.82		10A	10A		
						-	1.00	4.00 11/		
15kV/10A SiC	10 10/ 104	22	20			52.5	1.8Ω at	180 W		
MOSFET	10 kV, 10A	32	20	5	47.5		10A	at 10A		
	MOSFET 10 kV, 10A 32 20 5 47.5 10A at 10A									

- For 100A operation, it has been assumed that the ten number of HV modules connected in parallel of 10kV/10A and 15kV/10A devices respectively.
- The thermal resistances of module (Rth_{j-c}) of 15kV, 20A SiC IGBT (with single IGBT chip) **0.65^oC/W**[1]. 10kV/15kV SiC MOSFET has same packaging of that 15kV SiC IGBT, so it has been assumed same thermal resistance .Therefore, the effective thermal resistance with ten parallel devices of 10kV module will be 0.065^oC/W and of 15 kV module will be 0.0358^oC/W (because each module has two parallel chips).
- The thermal resistance of 1.7kV SiC MOSFET device is 0.071°C/W. Therefore, the effective thermal resistance with **five**, **ten series** connected devices will be 0.0014°C/W and 0.007°C/W respectively for making 5kV, 10kV HV series switch.

1. Kasunaidu Vechalapu, et al.," Comparative Evaluation of 15 kV SiC MOSFET and 15 kV SiC IGBT for Medium Voltage Converter under Same dv/dt Conditions", Energy Conversion Congress and Exposition (ECCE), 2015 IEEE

Comparison of total losses of HV SiC module

(10kV/10A ten parallel modules) and HV switch

with series connected LV SiC MOSFETs

Table: Total losses comparison of single 10 kV/120 A module, five series 1.7 kV devices, and ten parallel devices of 10 kV/20 A at 4.7 kV 100 A switching.

Device	No of devices for series or parallel for 4.7 kV,100A operation	Total Switching loss	Total switching losses at 5 kHz	Total conduction losses	Total semi- conductor losses	Effective Thermal resistance	Junction temperatur e for case $T_c=40$ °C	Total Snubber Resistor loss	Total losses
10kV/10A SiC MOSFET	10 devices parallel	140.6 mJ	703 W	800 W	1503 W	0.065 °C/W	137.6 ºC	0	1503 W
1.7kV SiC MOSFETwith snubber:33nF,4.7Ω	5 devices in series	104.5 mJ	522.5W	750 W	1272.5W	0.014 ºC/W	57.8°C	716W	1988W

- Total loss using HV module is 24% less than HV switch using series connected device for 4.7kV/100A operating condition
- But the junction temperature of HV switching using series connected 1.7kV SiC MOSFETs is significantly less than HV module. Hence more saving in heat sink size.
- Need to perform more detailed analysis for power density comparison.

Comparison of total losses of HV SiC module(single or parallel) and HV switch with series connected LV SiC MOSFETs

Table :Total losses comparison of **ten series 1.7 kV devices**, and **ten parallel devices of 15 kV/20 A** at 10 kV 100 A switching.

Device	No of devices for series or parallel for 10kV,100A operation	Total Switching loss	Total switching power losses at 5 kHz	Total conduction losses	Total semi- conductor losses	Effective Thermal resistance of module (R th _{j-c})	Junction temperature	Total Snubber Resistor loss	Total losses
15kV/20A SiC MOSFET	10 devices in parallel	525 mJ	2625 W	1800 W	4425 W	0.0358 °C/W	158 ºC	0	4425 W
1.7kV SiC MOSFET with 33nF, 4.7Ω	10 device in Series	209 mJ	1045 W	1500 W	2545 W	0.007 °C/W	57.8ºC	1432 W	3977 W

- For 10 kV, 100A operation, HV switch with series connected 1.7kV SiC MOSFETs has lower total loss (10 % less) compared to 15kV HV SiC MOSFET for one of the snubber value.
- Also the junction temperature of HV switching using series connected 1.7kV SIC MOSFETs is significantly less than HV module. Hence more saving in heat sink size.
- Therefore the breakeven point for HV SiC MOSFET module more efficient could be around 10kV to 12kV beyond that series connection LV SiC MOSFET is more favorable for₄high voltage bus.

- This work is supported by US Govt. through the DOE NNMII Power America Institute
- This work made use of FREEDM ERC shared facilities supported by National Science Foundation under award no. EEC-0812121.

Thank You!!!

Questions

Acknowledgements: FREEDM Systems Center, PowerAmerica ARPA-E and DOE Dept. of ECE, NC State University